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Abstract
Motivation: Inferring differential gene regulatory networks (GRNs) between different conditions from gene expression profiles remains a signif
icant challenge. Current GRN inference approaches are limited by either scalability in large networks or accuracy in high-dimensional scenarios. 
Furthermore, most existing methods require paired samples for comparative GRN analyses.
Results: To overcome these challenges, we model gene regulation as a distribution transportation problem and propose an efficient and effec
tive method, called double optimal transport (OT), for reconstructing differential GRNs from the perspective of optimal transport theory, applica
ble to unpaired samples. Double OT is a novel two-level OT framework. It first aligns unpaired samples by solving a partial OT problem at the 
sample level, and then infers GRNs from the aligned samples by solving a robust OT problem at the gene level. Comprehensive simulation stud
ies demonstrate the superior efficiency and efficacy of double OT in different scales of networks compared to state-of-the-art methods. We 
also apply the proposed method to a gastric cancer dataset, identifying the proto-oncogene MET as a central node in the gastric cancer GRN. Its 
crucial role in early oncogenesis and potential as a therapeutic target further validate our approach and enhance our understanding of the regula
tory mechanisms of gastric cancer.
Availability and implementation: A Python library that implements the proposed method is available at https://github.com/Mengyu8042/ 
ot-grn.

1 Introduction
Understanding gene regulatory networks (GRNs) is crucial 
and has broad applications. Reconstruction of GRNs seeks to 
distill the intricate processes of gene regulation into a simpli
fied network model based on observed data. In this model, 
nodes represent regulatory and target genes, while edges de
pict the directional influences exerted by regulators on their 
targets, grounded in their physical interactions (Delgado and 
G�omez-Vela 2019). Accurately inferring differential GRNs 
between different conditions can improve our understanding 
of gene regulation across different states, such as normal ver
sus tumor tissues, thus illuminating the molecular mecha
nisms driving diseases and advancing the development of 
targeted therapeutic interventions (Cangiano et al. 2021, 
Suter et al. 2022).

To achieve these goals, a variety of computational 
approaches have been developed to reconstruct gene regula
tory networks from gene expression data. Existing methods 
generally fall into three categories: correlation-based, model- 
based, and machine learning-based approaches (Zhao et al. 
2021, Kim et al. 2023). Correlation-based methods use a 
specific metric such as Pearson’s correlation, Spearman’s 

rank-based correlation, partial correlation, or conditional 
mutual information to quantify the association between 
genes (Friedman et al. 2008, Zhao et al. 2016, Grimes et al. 
2019). Although these methods are flexible and computation
ally efficient, they tend to produce noisy results and lose effi
ciency when the number of genes significantly exceeds the 
sample size (Zhao et al. 2021). Model-based techniques, on 
the other hand, employ structured models such as Boolean 
networks, Bayesian networks, or differential equations, and 
optimize model parameters to infer relationships 
(Tsamardinos et al. 2006, Haury et al. 2012, Yang et al. 
2021). Such methods offer improved robustness against noise 
and uncertainty; however, their scalability is limited due to 
the inherent complexity of the models used (Huynh-Thu and 
Sanguinetti 2015, Delgado and G�omez-Vela 2019). Lastly, 
machine learning-based methods reformulate the inference 
task into classification or regression problems, using algo
rithms such as random forests, XGBoost, or neural networks 
to rank the importance of regulatory links (Huynh-Thu et al. 
2010, Zheng et al. 2019, Ma et al. 2020). Although power
ful, some ML-based approaches are computationally expen
sive when inferring large-scale networks (e.g. thousands of 
genes or more), and they may suffer from the curse of 

Received: 9 September 2024; Revised: 28 May 2025; Editorial Decision: 5 June 2025; Accepted: 1 August 2025 
© The Author(s) 2025. Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2025, 41(8), btaf352 
https://doi.org/10.1093/bioinformatics/btaf352 
Advance Access Publication Date: 4 August 2025 
Original Paper 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/8/btaf352/8221768 by guest on 16 August 2025

https://orcid.org/0000-0002-5286-7525
https://orcid.org/0000-0002-2744-9030
https://github.com/Mengyu8042/ot-grn
https://github.com/Mengyu8042/ot-grn


dimensionality when only limited sample sizes are available 
(Delgado and G�omez-Vela 2019, Kim et al. 2023). We refer 
to Badia-I Mompel et al. (2023) and Kim et al. (2023) for a 
comprehensive overview.

When the goal is to reconstruct a differential GRN that 
reflects changes between states or over time (see Section 2 for 
details), it is natural to extend the approaches mentioned 
above to comparative study. However, such methods typi
cally require paired samples from different states or time sli
ces, and this requirement is often unmet, resulting unpaired 
samples. Unpaired samples refer to measurements obtained 
from distinct cells or patients under different conditions or 
time slices, where each sample is observed/measured under 
only one technology, condition, or time slice. For instance, in 
single-cell RNA sequencing studies, cells are destroyed during 
sequencing, resulting in unpaired temporal snapshots of cel
lular states. In addition, when studying changes from normal 
to tumor states, paired tissue samples from the same individ
ual are often limited. Typically, only tumor samples are ac
cessible for most patients, and normal samples need to be 
sourced externally. To enhance analytical performance, it is 
necessary to augment the dataset by matching normal sam
ples from alternative data sources with the tumor samples. 
An exception that can handle unpaired samples is graphical 
models (Danaher et al. 2014, Tian et al. 2016, Tu et al. 
2021). Instead of directly analyzing changes in gene expres
sion levels, this line of work compares partial correlations de
fined by precision matrices between different states to infer 
changes indirectly. More recently, GRN inference methods 
for single-cell data have also been designed to work with un
paired samples (Demetci et al. 2022, Singh et al. 2022, 
Herbach 2023, Bhaskar et al. 2024, Zhao et al. 2024).

To overcome the limitations of current GRN methods, we 
develop a novel approach for inferring GRNs based on opti
mal transport (OT) theory (Villani 2021). Originating from 
the seminal ideas of Gaspard Monge and later formalized by 
Leonid Kantorovich, optimal transport aims at moving one 
distribution of mass to another with minimal effort. Due to 
its ability to establish correspondences and quantify discrep
ancies between distributions, OT has been successfully used 
in various fields, from statistics, economics to biomedical re
search (Zhang et al. 2021, Li et al. 2023b, c).

1.1 Contributions
Our major contributions are three-fold.

First, by modeling gene regulation as a transportation 
problem of gene expression distributions, we propose a scal
able and effective OT-based differential GRN inference 
method. Specifically, given comparative gene expression 
data, we calculate an optimal transport plan to move the dis
tribution of gene expression from one state to another, where 
the transport mass represents the strength of regulatory rela
tionships. To our knowledge, this is the first work to model 
gene regulation through the lens of OT theory.

Second, to deal with unpaired data, we introduce a novel 
two-level OT framework that first applies OT to align un
paired samples at the sample level, followed by OT at the 
gene level to reconstruct differential GRNs from these aligned 
samples. Such integration fully leverages the advantages of 
OT in distribution matching and comparison, and enhances 
the feasibility of inferring complex biological networks.

Third, we demonstrate the improved accuracy and effi
ciency of our method through extensive experiments on 

synthetic data and real-world gastric cancer datasets (Wang 
et al. 2014, Kang et al. 2022). Additionally, we identify the 
proto-oncogene MET as a central node in the gastric cancer 
GRN, further validating our approach and deepening our un
derstanding of the regulatory mechanisms in gastric cancer.

2 Materials and methods
We analyze gene expression data from two comparative states 
(e.g. normal and tumor), represented as X 2 Rp×n and 
Y 2 Rp×m, respectively. Both datasets contain the same p genes 
but may have unpaired n and m samples. The target network 
G¼ ðV;EÞ is an unsigned directed graph, where V represents a 
set of p nodes corresponding to genes fg1; . . . ;gpg, and E�
fðgi;gjÞ : ðgi;gjÞ 2 V2g is a set of directed edges. An edge from 
node gi to node gj signifies that gene i regulates the expression 
of gene j through either activation or inhibition (see Fig. 1A). 
To depict the dynamic transition from normal to tumor states, 
we can also reformat the graph in an unfolded structure, as 
shown in Fig. 1B. This representation explicitly displays the ex
pression relationships between potential regulators and their 
target genes across different time slices.

Building on established work (Huynh-Thu and Sanguinetti 
2015, Zheng et al. 2019), we focus on providing a ranking of 
regulatory links, while deferring the problem of automati
cally determining a weight threshold for practical network 
construction to future investigations.

2.1 Optimal transport problems
Optimal transport has been widely used for distribution com
parison and matching (Meng et al. 2020, Li M et al. 2023a, Li 
T et al. 2024, 2025). Consider two distributions represented by 
empirical samples fxig

n1
i¼1;fyjg

n2
j¼1 � R

d with associated mass 
vectors a 2 Rn1

þ and b 2 Rn2
þ , referred to as source and target 

distributions, respectively. We can infer their correspondence 
relationships by solving an optimal transport problem. In partic
ular, the Kantorovich OT formulation is expressed as 

minT≥0hC;Ti :¼
P

i;jCijTij

s:t: T1n2 ¼ a; T>1n1 ¼ b;
(1) 

where C 2 Rn1×n2
þ is a cost matrix derived from the cost func

tion c : Rd×Rd ! Rþ , with elements Cij ¼ cðxi;yjÞ represent
ing the cost of moving unit mass from xi to yj. The matrix 
T 2 Rn1×n2

þ represents feasible transport plans, where Tij speci
fies the amount of mass transferred from xi to yj. The solution 
to (1), known as the optimal transport plan, minimizes the total 
transportation cost. An illustration of the OT framework is pro
vided in Fig. 2.

Figure 1. Two equivalent representations of a GRN. In (B), gðtÞi 
corresponds to the ith gene in the t-th time slice. For example, t ¼ 0 and 
t ¼ 1 represent normal and tumor states, respectively.
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To address potential outliers and noise in data, robust OT, 
also called unbalanced OT (Pham et al. 2020, Shen et al. 
2021), relaxes the strict mass conservation constraints in (1)
using the Kullback–Leibler (KL) divergence as regularization 
terms, leading to the formulation: 

minT≥ 0hC;Tiþ εKLðT1n2 jjaÞþ εKLðT>1n1 jjbÞ; (2) 

where ε>0 is a marginal relaxation parameter. As ε ! þ1, 
the robust OT problem (2) converges to the classical OT formu
lation (1), which requires exact mass matching between distri
butions. As shown in Fig. 3A, robust OT restricts long-range 
mass transportation compared to classical OT, thus improving 
robustness in the presence of noisy or outlier data.

Another variant, partial OT, minimizes the transport cost 
for only a predefined fraction of total mass (Chapel et al. 
2020). Its mathematical expression is 

minT≥ 0hC;Ti
s:t: T1n2 ≤ a; T>1n1 ≤b; 1>n1

T1n2 ≤ s;
(3) 

where 0≤ s≤minðjjajj1; jjbjj1Þ bounds the total amount of 
mass to be transported, thereby especially suited for partial 
or local alignments (see Fig. 3B).

Remark 1 Although both robust and partial OT allow 
transporting less than the total mass, they differ in 
how this relaxation is handled. Partial OT (3) imposes 
a hard transport budget s and can yield sparse one-to- 
one matches, while robust OT (2) uses soft KL 
penalties and typically yields spread-out transport 
plans. Therefore, robust OT is better suited for 
handling noise and outliers (Fig. 3A), whereas partial 
OT is more appropriate for confidently aligning a 
subset of samples (Fig. 3B).   

Overall, these optimal transport problems can be unified under 
a general formulation; see Supplementary Section S1 for details, 
available as supplementary data at Bioinformatics online.

2.2 Gene-level OT for GRN inference
In all living cells, resources such as energy, ribosomes, and 
proteome capacity are finite. The reduced demand for any of 
these finite resources allows their reallocation to other intra
cellular processes (Weiße et al. 2015). Such “shifting” of 
resources makes OT at the gene level a natural framework 
for modeling gene expression changes between two pheno
types (such as normal and disease), which may reveal the 
gene regulation relationship.

In tissues under normal conditions, certain pathways are 
stably activated, implying that relative gene expression levels 
are also stable across different individuals. We represent the 
normal state by a vector of gene expression proportions, a¼
ða1; . . . ;apÞ

> with 
Pp

i¼1 ai ¼ 1. Similarly for the tumor state, 
we introduce another state vector b¼ ðb1; . . . ;bpÞ

> with 
Pp

i¼1 bi ¼ 1. The transition between these two states captures 
how tumor cells deactivate certain pathways (i.e. genes 
turned off) and activate alternative pathways (i.e. genes 
turned on). Genes in these competitive pathways form differ
ential regulatory networks, which offer new insights into the 
underlying regulatory mechanisms beyond traditional tran
scription factor (TF)-based interactions.

We first consider the scenario where n¼m and the sam
ples in X and Y are paired. Let xðiÞ represent the ith row of 
the normal expression matrix X, indicating the expression 
level of gene i in X, with yðiÞ similarly defined for the tumor 
expression matrix Y. Empirically, we use the average expres
sion level of each gene in the normal (or tumor) state as 
the source (or target) distribution, i.e. a¼X1n=n 
and b¼ Y1n=n.

In GRNs, correlation measures are widely used to infer de
pendencies between genes. A high absolute correlation indi
cates a regulatory relationship. Therefore, we define the cost 
matrix C 2 Rp×p with Cij ¼ cðxðiÞ;yðjÞÞ ¼ 1 − jrðxðiÞ;yðjÞÞj, 
where rðxðiÞ;yðjÞÞ is the Spearman’s rank-based correlation co
efficient between gene i in the normal state and gene j in the 
tumor state. This cost ensures that more highly correlated 
gene pairs have lower transport costs, allowing OT to trans
port a larger amount of mass, which can be interpreted as 
stronger regulatory interactions.

Compared to other similarity measures such as Euclidean 
distance, Pearson’s correlation, and partial correlation, 
Spearman’s correlation not only captures both linear/non
linear and positive/negative regulatory relationships, making 
it suitable for complex biological interactions, but is also 
computationally efficient. By incorporating this correlation 
metric into the OT framework, we can effectively infer 
both the strength and directionality of regulatory interac
tions. Such correlation-based cost has also been used in OT 
literature for measuring cell similarities (Huizing 
et al. 2022).

To account for technical noise in data, we solve the robust 
OT problem (2) at the gene level and obtain the optimal 
transport plan T�, where each element T�ij represents the 
amount of mass transported from gene i to gene j, for 
i; j 2 f1; . . . ;pg. A larger T�ij indicates a significant regulatory 
link from gene i to gene j, suggesting that this interaction 
plays an important role in the transition from normal to tu
mor. Therefore, an edge from gene i to gene j is established if 
T�ij exceeds a certain threshold. Genes i and j connected by 
such edges are identified as important, potentially influential 
regulators or key targets.

Figure 2. Illustration of optimal transport for distribution matching. (Top 
row) Blue and red dots represent source and target 2D samples, 
respectively, with dot size corresponding to mass. (Bottom row) Darker 
cells indicate higher transportation costs (left) or larger transported 
mass (right).

Double OT for differential GRN inference with unpaired samples                                                                                                                                   3 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/8/btaf352/8221768 by guest on 16 August 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf352#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf352#supplementary-data


Remark 2 The constructed network may contain loops and 
cycles, because we do not impose restrictions on the 
structure of the transport plan. Instead, it captures all 
significant regulatory relationships. Unlike many 
GRN inference algorithms that generate directed 
acyclic graphs, our method aligns with the fact that 
biological networks often contain feedback loops and 
cyclic interactions (Hasty et al. 2001, Alon 2007).   

Figure 4C illustrates the gene-level OT process.

2.3 Two-level OT framework
The gene-level OT approach as described above requires 
paired samples to calculate the cost matrix between genes, 
and therefore is impractical when the samples are not paired. 
To tackle this challenge, we propose a two-level framework 
that first solves a pseudo-permutation matrix to match the 
samples and then reconstructs the differential GRN based on 
the aligned samples.

Our sample matching approach is motivated by the biolog
ical observation that, for an individual, only a small subset of 
genes typically exhibits significant expression changes be
tween different states or conditions. Therefore, samples with 
similar overall expression profiles are more likely to be 
matched across states. This intuition can be formalized using 
optimal transport theory.

In this sample alignment problem, typically only a subset 
of the total samples need to be matched. Therefore, we em
ploy the partial OT strategy (3) to facilitate meaningful align
ments without forcing matches where none exist. Let xi 
denote the ith column of X, representing the ith sample in X, 
and similarly, let yi denote the ith sample in Y. We assign 
equal weight to each sample, setting a¼ 1n and b¼ 1m. To 
ensure that more similar samples are aligned, we define the 
sample-sample cost matrix C using the cosine similarity in 
the global principal component (PC) space. Specifically, 
cðxi;yjÞ ¼ 1 − cosð~xi;~yjÞ ¼ 1 − ~x>i ~yj=ðjj~x ijj2jj~yjjj2Þ, where ~xi 2

Rr (or ~yj 2 R
r) contains the first r PCs of xi (or yj). Compared 

to the commonly used Euclidean distance, the cosine distance 
is scale-invariant and has become a popular similarity mea
sure for gene expression data (Jaskowiak et al. 2014, Huizing 
et al. 2022).

The solution to the problem (3), denoted as P�, is a 0–1 bi
nary matrix with exactly s non-zero elements, with each row 
and column containing at most one non-zero element (Bai 
et al. 2023). This pseudo-permutation matrix establishes the 
alignment relationship between s pairs of normal and tumor 

samples. By applying P� to the unpaired samples, we can ob
tain the aligned pairs. In particular, let fi1; i2; . . . ; isg and 
fj1; j2; . . . ; jsg be the sets of row and column indices where 
P�ij ¼ 1. Then, the aligned expression matrices can be con

structed as bX ¼ ½xi1 ; . . . ;xis � and bY ¼ ½yj1 ; . . . ;yjs �. This 
sample-level OT process is displayed in Fig. 4B.

Finally, by solving the robust OT problem (2) using aligned 
samples bX; bY 2 Rp× s, the differential GRN is constructed. 
The complete algorithm for differential GRN inference using 
the Double OT method is summarized in Algorithm 1 and vi
sualized in Fig. 4A.In Algorithm 1, we approximate both the 
sample-level and gene-level OT problems with entropic regu
larization to improve scalability. Specifically, we solve the 
partial OT problem in (3) through the Dykstra algorithm 
(Benamou et al. 2015), with computational complexity 
Oðnm logðnþmÞÞ. We solve the robust OT problem in (2) us
ing the unbalanced Sinkhorn–Knopp algorithm (Pham et al. 
2020), whose complexity is Oðp2 logpÞ. Consequently, the 
total time complexity of Algorithm 1 is 
Oðp2 logpþnm logðnþmÞÞ. This nearly quadratic scaling in 
both n (or m) and p makes the proposed Double OT method 
scalable to large-scale GRN inference problems.

Remark 3 A related method, CO-Optimal Transport 
(COOT) (Redko et al. 2020, Demetci et al. 2022), 
also integrally solves for sample-level and feature-level 
couplings. However, COOT and Double OT are 
designed for different goals. COOT aims to align data 
from heterogeneous domains (e.g. multi-omics data) 
using distance-based costs, while Double OT is 
specifically designed for GRN inference, using 
biologically motivated cost functions that better 
capture potential regulatory strength.   

2.4 Performance evaluation
2.4.1 Competing methods
To ensure a comprehensive and diverse evaluation, we com
pare our double OT method with widely used GRN inference 
approaches from different categories as follows.

i) Baseline method: randomly ranking the importance of 
edges (Random). 

ii) Correlation-based methods: Spearman’s rank-based cor
relation (Spearman); part mutual information with path 
consistency algorithm (PCA-PMI) (Zhao et al. 2016). 

Figure 3. Comparison between classical OT and its variants. a and b represent source and target distributions, respectively. a0ROT and b0ROT in A (or a0POT 
and b0POT in B) are the marginals of the optimal plan in robust OT (or partial OT) problems.
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iii) Model-based methods: least angle regression with stabil
ity selection (TIGRESS) (Haury et al. 2012); max–min 
hill-climbing Bayesian network structure learning algo
rithm (MMHC) (Tsamardinos et al. 2006); stochastic 
dynamical model based on transcriptional bursting 
(Harissa) (Herbach 2023); joint graphical lasso (JGL) 
(Danaher et al. 2014); latent differential graphical model 
(LDGM) (Tian et al. 2016). 

iv) Machine learning-based methods: ensemble of trees us
ing random forests (GENIE3) (Huynh-Thu et al. 2010); 
nonlinear ordinary differential equations with XGBoost 
(NonlinearODE) (Ma et al. 2020). 

v) OT-based methods: unbalanced CO-OT (UCOOT) 
(Tran et al. 2023); gene velocity estimation (OTVelo) 
(Zhao et al. 2024). 

Implementation details for our method and the competitors 
are available in the Supplementary Section S2.1, available as 
supplementary data at Bioinformatics online.

2.4.2 Evaluation metrics
Given normal and tumor expression matrices, each GRN in
ference method predicts a ranked list of putative regulatory 
links. By comparing these predictions with the ground truth 
network, we calculate the area under the receiver operating 

Figure 4. Overview of the proposed Double OT method for inferring differential GRNs, accommodating both paired and unpaired samples.
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characteristic (ROC) curve and the precision-recall (PR) 
curve, denoted as AUROC and AUPR, respectively. In addi
tion to global performance, we assess the accuracy of top pre
dictions using early precision (EP), which is the fraction of 
true positives among the top-K edges, where K is the number 
of edges in the ground truth network. This metric emphasizes 
the accuracy of the most confident predictions.

2.5 Datasets
2.5.1 Synthetic data
The normal expression matrix X is generated using a 
Gaussian distribution to simulate the baseline gene expres
sion levels. Subsequently, we randomly select differentially 
expressed (DE) genes and their parent genes. The tumor ex
pression matrix Y is then produced using a conditional 
Gaussian distribution according to specific regulatory func
tions. These mechanisms encompass both positive and nega
tive regulations, as well as linear and nonlinear interactions, 
aiming to closely resemble real-world biological scenarios. 
The detailed data generation process is described in 
Supplementary Section S2.2, available as supplementary data
at Bioinformatics online.

It is important to note that although our synthetic data ad
here to a (conditional) Gaussian distribution, as used in exist
ing studies (Xiao 2009, Thompson et al. 2015), our approach 
itself is distribution-free and does not depend on specific 
distributions.

2.5.2 Gastric cancer data
To explore the molecular pathogenesis of gastric cancer (GC), 
we analyze the gene expression array data collected by Wang 
et al. (2014). The dataset, accessible through the European 
Genome-phenome Archive under accession code EGAS000 
01000597 (https://ega-archive.org/studies/EGAS00001000597), 
involves gene expression profiling in 100 patients diagnosed 

with GC. Within this cohort, 43 patients have both normal and 
tumor samples available, while the remaining individuals only 
have tumor samples because the corresponding normal samples 
are absent. The dataset comprises a total of 3:1×104 genes. For 
interpretability, we use the NCBI Reference Sequence (RefSeq) 
Database (O’Leary et al. 2016) to filter well-characterized human 
genes (https://ftp.ncbi.nih.gov/refseq/H_sapiens/RefSeqGene/), 
resulting in 6276 genes for subsequent analysis.

3 Results
3.1 Simulation studies
We evaluate the effectiveness and scalability of the proposed 
method using synthetic data. Considering that competing meth
ods except for graphical models are limited to handling paired 
samples, we directly apply these approaches and our Double 
OT (DOT-p) method to the paired generated data. To further 
demonstrate the alignment capability of Algorithm 1, we also 
shuffle the tumor samples and employ Double OT (DOT-u) 
and graphical models (i.e. JGL and LDGM) to reconstruct the 
GRN from these unpaired samples.

To compare each method in various network sizes and sam
ple sizes, we consider various combinations of the number of 
genes (p 2 f500;5000g) and the sample size (n 2 f40;100g). 
Regarding additional data generation parameters, we set the 
proportion of differentially expressed (DE) genes to α 2
f5%;10%;20%g for p¼ 500 and α 2 f1%;5%;10%g for 
p¼ 5000. The expected number of regulators (including itself) 
for each DE gene is set to λ 2 f2;5;8g. These settings ensure a 
realistic simulation of differential GRNs.

Figure 5 compares the accuracy of GRN inference methods 
across different scales (p, n) and parameters (α;λ). For clarity, 
we only present the most competitive method from each class 
here; the full comparison is provided in Supplementary Section 
S3.1, available as supplementary data at Bioinformatics online. 
Performance is comprehensively measured by AUROC, AUPR, 
and EP, where higher values indicate better performance. Our 
DOT-p/u method, as shown in Fig. 5, exhibits superior perfor
mance in most cases, particularly for large-scale networks (e.g. 
Fig. 5C and D). In the case of small-scale networks, the 
Bayesian method, MMHC, occasionally achieves slightly higher 
accuracy when λ¼ 2 (see Fig. 5A). However, its advantage 
diminishes with increasing λ, attributed to the increasing com
plexity when inferring the posterior distribution with more con
ditioned variables. Conversely, our DOT-p/u method performs 
well in managing multi-wise regulation.

Compared to the Spearman method, which directly uses 
correlation as edge importance, our approach consistently 
outperforms it, especially when the sample size is relatively 
small. This indicates that OT effectively reduces the noise in 
the original correlation matrix, thereby better revealing the 
true signals. Additionally, the performance of machine 
learning-based methods like GENIE3 decreases with reduced 
sample sizes, further highlighting the advantages of our ap
proach in common biological scenarios of insufficient sam
ples. While another OT-based method, OTVelo, achieves 
comparable AUROC to Double OT, its performance on 
AUPR and EP is much lower, indicating limited ability to pri
oritize true regulatory interactions in imbalanced settings.

Moreover, the DOT-u applied to unpaired samples consis
tently achieves competitive or even identical performance com
pared to DOT-p applied to paired samples. This success can be 
attributed not only to the high accuracy rate of partial OT in 

Algorithm 1 Double OT for Differential GRN Inference

Require:
X 2 Rp×n;Y 2 Rp×m                                 � Expression matrices

Ensure:
1: if X and Y are unpaired then
2:  P�  the approximate solution to the partial OT problem (3)
with ðC;a;bÞ defined by Cij ¼ cðxi ;yjÞ ¼ 1 − cosð~x i ;~y jÞ, a¼ 1n, 
and b¼ 1m, where xi (or yi ) is the ith column of X (or Y), and ~x i 

(or ~y i ) contains the first r principle components of xi (or yi ).
3:  If n≤m, for each row i of P�, find ji ¼ argmaxj P �ij ; other
wise, for each column j, find ij ¼ argmaxi P �ij . Select s entries 
with top-s highest P �ij among fði; jiÞg

n
i¼1 or fðij ; jÞg

m
j¼1, denoted as 

fðik ; jkÞg
s
k¼1. Reorganize

X ½xi1 ; . . . ;xis �; Y ½yj1 ; . . . ;yjs �:

4: else
5:  s n
6: end if
7: T�  the approximate solution to the robust OT problem (2)

with ðC;a;bÞ defined by Cij ¼ cðxðiÞ;yðjÞÞ ¼ 1− jrðxðiÞ;yðjÞÞj, 
a¼X1s=s, and b¼ Y1s=s, where xðiÞ (or yðiÞ) is the ith row of 
X (or Y).

8: Return T�, where T �ij is the score of the regulatory link from 
gene i to gene j, for i; j 2 f1; . . . ;pg.
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sample alignment, but also to the robustness of unbalanced OT 
in differential GRN inference. More detailed results on sample 
alignment are available in Supplementary Section S3.2, available 
as supplementary data at Bioinformatics online.

Figure 6 presents the average computational time of each 
GRN inference method as the number of genes or samples 
increases. Detailed runtime results for various gene and sam
ple sizes are reported in Supplementary Section S3.3, avail
able as supplementary data at Bioinformatics online. Our 
DOT-p/u methods show great scalability in both p and n. 
DOT-p is only slightly slower than Spearman, and is much 
faster than model-based MMHC and machine learning-based 
GENIE3. This suggests that the main computational bottle
neck of DOT-p lies in computing the ground cost matrix, 
which could be sped up through parallel or distributed com
puting. DOT-u requires more time than DOT-p due to the 
sample alignment step, but it still scales better than OTVelo 
as n increases. Overall, our approach achieves a decent bal
ance between efficiency and accuracy, making it well suited 
for high-dimensional, large-scale datasets.

We also perform sensitivity analyses and robustness tests, 
with detailed results provided in Supplementary Sections S3.4 

and S3.5, available as supplementary data at Bioinformatics 
online, respectively.

3.2 Gastric cancer data analysis
We assess the proposed method on the gastric cancer dataset 
from three key perspectives:

i) Accuracy: if it can reconstruct a more accurate gastric 
cancer GRN compared to other methods. 

ii) Coverage: if it can achieve a broader coverage of 
recorded regulation links than other methods. 

iii) Exploration: if it can reveal new biological insights into 
the regulatory mechanisms underlying gastric cancer. 

To answer the first question, we use the GC pathway 
(https://www.kegg.jp/pathway/hsa05226) from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
(Kanehisa et al. 2017) as the reference for evaluation. In this 
small-scale reference network, 142 genes were annotated as 
gastric cancer genes and 431 edges were annotated as regula
tory interactions. By intersecting these genes with our GC 
dataset, the network comprises 104 genes and 226 edges. 

Figure 5. Comparison of GRN inference methods applied to unpaired (OTVelo and DOT-u) or paired (others) samples across different network sizes 
(panels A and B vs. C and D) and sample sizes (panels A and C vs. B and D). The performance is evaluated using three metrics, i.e. AUROC, AUPR, and 
EP (from top to bottom), with higher values indicating better performance. The evaluation is carried out across different proportions of DE genes α (from 
left to right) and in-degree parameters λ (horizontal axis). Vertical bars are the standard errors based on 10 replications. For the Random method, small 
values are annotated directly on the bars for clarity.
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Although this database may not be exhaustive, it serves as a 
valuable benchmark network containing cutting-edge knowl
edge. We evaluate the performance of GRN inference on this 
specific subset of genes. The comparison results of our double 
OT and other methods are reported in Tables 1 and 2. Here, 
DOT-u first shuffles the 100 tumor samples and applies 
Algorithm 1 on the unpaired and unbalanced samples. From 
Tables 1 and 2, we observe that DOT-p outperforms other 
GRN inference methods with respect to (w.r.t.) all three eval
uation criteria. Moreover, the DOT-u using unpaired samples 
also exhibits superior accuracy. Detailed alignment results 
for the GC dataset are included in Supplementary Section 
S3.1, available as supplementary data at Bioinformatics on
line. We also evaluate DOT-u on single-cell RNA sequencing 
data of gastric cancer (Kang et al. 2022). The results show 
that DOT-u can achieve better performance (EP¼ 0.108) on 
higher-resolution data and remains competitive in unpaired 
settings without true sample correspondences. It is detailed in 
Supplementary Section S3.6, available as supplementary data
at Bioinformatics online. In the following, we focus on the 
double OT method with paired samples (DOT-p) for more 
precise analyses.

We then proceed to assess the coverage of recorded regula
tory links within the reconstructed GRN. In this analysis, we 
use the TFLink gateway (Liska et al. 2022) comprising hu
man transcription factor–target gene (TF–TG) interactions as 
a reference, to investigate how many known TF–TG links 
existed in the top-ranked positive edges for each method. The 
results are relegated to Supplementary Section S3.7, available 
as supplementary data at Bioinformatics online, illustrating 
the broader coverage achieved by our double OT method.

In addition, we extract a subnetwork that includes the 
edges directly linked to the GC biomarker genes (Choi et al. 
2022, Park et al. 2023) among the top-5000 edges con
structed by our DOT-p method, as shown in Fig. 7. In this 
subnetwork, nearly all genes have been validated as being re
lated to gastric cancer. Moreover, many of the regulatory 
relationships represented by these edges have been corrobo
rated in the existing literature. References for the validated 
GC-related genes and regulatory links can be found in 
Supplementary Section S3.8, available as supplementary data
at Bioinformatics online. Furthermore, proto-oncogene 
Mesenchymal-Epithelial Transition (MET), a prototypical re
ceptor tyrosine kinase, is recognized as the hub node within 
the subnetwork shown in Fig. 7. Its overexpression is mostly 
noted in dysplasia and precancerous intestinal metaplasia, il
lustrating its critical role in the early phase of the oncogenesis 

of GC (Sun et al. 2012). Targeting inhibitors against MET 
also presents promising avenues for drug development in the 
context of gastric cancer (El Darsa et al. 2020). Furthermore, 
we conduct gene enrichment analysis for 1033 genes linked 
to top-5000 edges; see Supplementary Section S3.9 for 
details, available as supplementary data at Bioinformatics on
line. The pathway, human papillomavirus infection, is the 
most significant one. The connection between human papillo
mavirus infection and gastric cancer, although unexpected, 
has been reported by prior studies (Zeng et al. 2016). These 
findings not only further support our method but also pro
vide novel biological discoveries into the regulatory mecha
nisms of gastric cancer.

To better reflect real-world scenarios, where unpaired sam
ples may not have true matching relationships, we further 
evaluate the proposed method using data from independent 
sources and refer to Supplementary Section S3.10 for details, 
available as supplementary data at Bioinformatics online.

Figure 6. Average running time (seconds) of GRN inference methods versus increasing network sizes p (left panel, n ¼ 100) and sample sizes n (right 
panel, p ¼ 100) in the log-log scale. Shaded regions are the standard errors based on 10 replications.

Table 1. Comparison of methods requiring paired samples in inferring 
gastric cancer KEGG pathway w.r.t. AUROC, AUPR, and EP (the higher 
the better).a

Metrics AUROC AUPR EP

Random 0.501 0.021 0.018
Spearman 0.513 0.021 0.009
PCA-PMI 0.536 0.023 0.027
TIGRESS 0.530 0.024 0.027
MMHC 0.510 0.023 0.031
GENIE3 0.524 0.022 0.022
NonlinearODE 0.521 0.021 0.004
DOT-p 0.551 0.029 0.040

a The top-3 results of each metric are in italics. The best is in bold.

Table 2. Comparison of methods applicable to unpaired samples in 
inferring gastric cancer KEGG pathway w.r.t. AUROC, AUPR, and EP (the 
higher the better).a

Metrics AUROC AUPR EP

Harissa 0.571 0.024 0.004
JGL 0.509 0.025 0.031
LDGM 0.540 0.025 0.027
UCOOT 0.546 0.023 0.013
OTVelo 0.515 0.023 0.031
DOT-u 0.556 0.026 0.031

a The top-3 results of each metric are in italics. The best is in bold.
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4 Discussion
In this study, we conceptualize changes in gene expression be
tween states as a mass transport problem and propose a two- 
level OT framework, named double OT, to infer large-scale 
differential GRNs for paired or unpaired samples. This 
method determines edge scores by solving the robust OT 
problem and handles unpaired samples by incorporating a 
partial OT-based sample alignment step. To our knowledge, 
this is the first approach that explicitly models gene regula
tion as a mass transportation problem from the perspective 
of OT theory.

Extensive experiments show that our approach, using ei
ther paired or unpaired samples, outperforms state-of-the-art 
GRN inference methods, many of which are limited to paired 
samples, in both effectiveness and efficiency. By applying the 
double OT method to a gastric cancer dataset, we also un
cover novel biological insights into the regulatory mecha
nisms involved in gastric cancer.

Our work has limitations and can be improved or extended 
in several ways. First, due to the nature of optimal transport, 
the inferred links in our GRN are more likely to reflect asso
ciations rather than actual or direct gene regulatory 

interactions. Future work could refine this by incorporating 
additional biological constraints or causal inference techni
ques. Second, while this work only focuses on gene expres
sion profiles, integrating multi-omic data could potentially 
yield more precise GRNs. Third, while our method directly 
models gene transitions between states, combining it with 
intra-state comparisons through the Fused Gromov– 
Wasserstein framework (Vayer et al. 2020) would offer a 
more comprehensive view of gene relations. Developing a 
computationally efficient method for this combination 
remains a challenge and is left for future work. Fourth, this 
work assumes static regulatory relationships between states 
(e.g. normal versus tumor), which may not fully capture the 
dynamic nature of gene regulation over time. Extending the 
double OT method to incorporate temporal data could pro
vide deeper insights into the dynamics of gene regulatory net
works. Finally, although the proposed method can handle 
large-scale networks with thousands of nodes, its nearly qua
dratic complexity poses challenges for much larger networks. 
Developing fast OT solvers that better fit the characteristics 
of GRN problems remains an exciting direction for further 
investigation.

Figure 7. Gastric cancer biomarker-linked subnetwork constructed by DOT-p. The orange, blue, and green nodes are biomarker genes, recorded GC- 
related genes (e.g. oncogenes, tumor suppressor genes, and dysregulated genes), and newly discovered GC-related genes, respectively. The solid and 
dashed edges are recorded and newly discovered regulatory relationships, respectively.
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